Abstract
We introduce new special ellipsoidal confocal coordinates in R n ( n ≥ 3) and apply them to the geodesic problem on a triaxial ellipsoid in R 3 as well as the billiard problem in its focal ellipse. Using such appropriate coordinates we show that these different dynamical systems have the same common analytic first integral. This fact is not evident because there exists a geometrical spatial gap between the geodesic and billiard flows under consideration, and this separating gap just “veils” the resemblance of the two systems. In short, a geodesic on the ellipsoid and a billiard trajectory inside its focal ellipse are in a “veiled assonance”—under the same initial data they will be tangent to the same confocal hyperboloid. But this assonance is rather incomplete: the dynamical systems in question differ by their intrinsic action angle-variables, thereby the different dynamics arise on the same phase space (i.e. the same phase curves in the same phase space bear quite different rotation numbers). Some results of this work have been published before in Russian (Tabanov, 1993) and presented to the International Geometrical Colloquium (Moscow, May 10–14, 1993) and the International Symposium on Classical and Quantum Billiards (Ascona, Switzerland, July 25–30, 1994).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have