Abstract
With the growing adoption of dash cameras, we are seeing great potential for innovations by analyzing the video collected from vehicles. On the other hand, transmitting and analyzing a large amount of video, especially high-resolution video in real time, requires a lot of communications and computing resources. In this work, we investigate the feasibility and challenges of applying vehicular fog computing for real- time analytics of crowdsourced dash camera video. Instead of forwarding all the video to the cloud, we propose to turn commercial fleets (e.g., buses and taxis) into vehicular fog nodes, and to utilize these nodes to gather and process the video from the vehicles within communication ranges. We assess the feasibility of our proposal in two steps. First, we analyze the availability of vehicular fog nodes based on a real-world traffic dataset. Second, we explore the serviceability of vehicular fog nodes by evaluating the networking performance of fog-enabled video crowdsourcing over two mainstream access technologies, DSRC and LTE. Based on our findings, we also summarize the challenges to largescale real-time analytics of crowdsourced videos over vehicular networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.