Abstract

Security is a huge challenge in vehicular networks due to the large size of the network, high mobility of nodes, and continuous change of network topology. These challenges are also applicable to the vehicular fog, which is a new computing paradigm in the context of vehicular networks. In vehicular fog computing, the vehicles serve as fog nodes. This is a promising model for latency-sensitive and location-aware services, which also incurs some unique security and privacy issues. However, there is a lack of a systematic approach to design security solutions of the vehicular fog using a comprehensive threat model. Threat modeling is a step-by-step process to analyze, identify, and prioritize all the potential threats and vulnerabilities of a system and solve them with known security solutions. A well-designed threat model can help to understand the security and privacy threats, vulnerabilities, requirements, and challenges along with the attacker model, the attack motives, and attacker capabilities. Threat model analysis in vehicular fog computing is critical because only brainstorming and threat models of other vehicular network paradigms will not provide a complete scenario of potential threats and vulnerabilities. In this paper, we have explored the threat model of vehicular fog computing and identified the threats and vulnerabilities using STRIDE and CIAA threat modeling processes. We posit that this initiative will help to improve the security and privacy system design of vehicular fog computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.