Abstract
The failure of vehicle’s suspension components has contributed to road crashes, while their defective operation can deteriorate the fuel efficiency of the vehicles. In this context, and when compared with solid cargo transporters, the road tankers would tend to produce larger roll forces during turning, as the curved shape of the liquid cargo container, shifts upwards the centre of gravity of the cargo. With reference to a rectangular cargo container representing the solid cargo situation, the increase in the position due to elliptical and circular tank shapes, can attain a value of 17% (100% fill, circular tank). In this study, experimental results comparing the lateral load transfer due to solid and liquid cargoes, indicate that the average force increase on the vehicle’s load-receiver side due to a liquid cargo, is 4.3%. To analyse the full-scale situation of both situations, that is, the higher position of the centre of gravity and the shifting of the liquid cargo, a simplified model is developed. The outputs from such a model when subjected to realistic operating conditions (speed and turning radius), suggest that the higher position of the centre of gravity due to using a non-rectangular cargo container generates an average force increase of 4.9% on the side receiving the load transfer. The incorporation of the effect of the liquid cargo, through the simple pendulum analogy, suggests that such an average increases to 6.76%, with a maximum of 8.35% in the case of the elliptical tank at 75% fill level. It is found that the average liquid cargo effect is 5.44%, which should be compared with the 4.3% of the experiments. Road tankers components would thus have a relatively shorter load cycle life than those of the solid cargo trucks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have