Abstract

This study focuses on the post-harvest preprocessing of fruits and vegetables, aiming to provide an effective way to conduct preprocessing operations in short food supply chains. We consider both a heterogeneous fleet of mobile preprocessing units and the possibility to pick up products for centralized preprocessing. The resulting problem is a variant of the classic heterogeneous fleet vehicle routing problems with time windows (HFVRPTW), with the additional consideration of multi-depot and heterogeneous service types, which we refer to as HFVRPTW-MDHS. These additional considerations are important to include in the development of more efficient food supply chains, but lead to a challenging routing problem. In this paper, we formulate the HFVRPTW-MDHS using a mixed-integer linear programming model. Due to the complexity of the model, we propose a customized adaptive large neighborhood search (ALNS) metaheuristic. We design a multi-level struct-based solution representation to improve the efficiency of the ALNS and develop customized methods for solution evaluation, feasibility checks, and neighborhood search. Comparing our results with the results of an exact algorithm and solutions in the existing literature, we find that our ALNS algorithm can obtain high-quality solutions quickly when solving HFVRPTW-MDHS and related variants of the VRP. Finally, we study the application of our approach in the case of precooling, which is a commonly used preprocessing operation, to illustrate the effectiveness of our approach in a relevant practical context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.