Abstract

Uneven road surfaces are the primary source of excitation in the dynamic interaction between a bridge and a vehicle and can lead to errors in bridge weigh-in-motion (B-WIM) systems. In order to correctly reproduce this interaction in a numerical model of a bridge, it is essential to know the magnitude and location of the various roadway irregularities. This paper presents a methodology for measuring the 3D road surface using static terrestrial laser scanning and a numerical model for simulating vehicle passage over a bridge with a measured road surface. This model allows the evaluation of strain responses in the time domain at any bridge location considering different parameters such as vehicle type, lateral position and speed, road surface unevenness, bridge type, etc. Since the time domain strains are crucial for B-WIM algorithms, the proposed approach facilitates the analysis of the different factors affecting the B-WIM results. The first validation of the proposed methodology was carried out on a real bridge, where extensive measurements were performed using different sensors, including measurements of the road surface, the response of the bridge when crossed by a test vehicle and the dynamic properties of the bridge and vehicle. The comparison between the simulated and measured bridge response marks a promising step towards investigating the influence of unevenness on the results of B-WIM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.