Abstract

Bridge weigh-in-motion (BWIM) is a technique of estimating vehicle loads on bridges and can be used to assess a bridge’s structural fatigue and therefore its life. BWIM can be realized by analyzing the bridge deflection in terms of its response to moving axle loads. To obtain accurate load estimates, current BWIM systems require strain sensors, whose (re-) installation costs have limited their application. In this paper, we propose a new BWIM approach based on a deep neural network using accelerometers, which are easier to install than strain sensors, thus helping the advancement of low-cost BWIM systems. By learning the bridge dynamism, our model estimates axle loads successfully from the noisy acceleration signals sampled on a real bridge in service.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.