Abstract

BackgroundExcitotoxic brain insult is associated with extensive neuronal damage but could also cause inflammatory reactivity and vascular remodeling. The effects of the vascular endothelial growth factor (VEGF) inhibitor, Cyclo-VEGI on expression of VEGF, microgliosis and astrogliosis, blood-brain barrier (BBB) integrity and neuronal viability have been studied following intra-striatal injection of the excitotoxin, quinolinic acid (QUIN). The purpose of this study was to examine VEGF-dependent inflammatory responses in excitotoxin-injected brain and their dependence on pharmacological antagonism of VEGF receptors.MethodsSingle and double immunofluorescence staining of cellular (microglia, astrocyte, neuron) responses and dye and protein infiltration of blood-brain barrier have been applied in the absence, and presence, of pharmacological modulation using a VEGF receptor antagonist, Cyclo-VEGI. Dunn-Bonferroni statistical analysis was used to measure for significance between animal groups.ResultsDetailed analysis, at a single time point of 1 d post-QUIN injection, showed excitotoxin-injected striatum to exhibit marked increases in microgliosis (ED1 marker), astrogliosis (GFAP marker) and VEGF expression, compared with PBS injection. Single and double immunostaining demonstrated significant effects of Cyclo-VEGI treatment of QUIN-injected striatum to inhibit microgliosis (by 38%), ED1/VEGF (by 42%) and VEGF striatal immunoreactivity (by 43%); astrogliosis and GFAP/VEGF were not significantly altered with Cyclo-VEGI treatment. Leakiness of BBB was indicated by infiltration of Evans blue dye and plasma protein fibrinogen into QUIN-injected striatum with barrier permeability restored by 62% (Evans blue permeability) and 49% (fibrinogen permeability) with Cyclo-VEGI application. QUIN-induced toxicity was demonstrated with loss of striatal neurons (NeuN marker) and increased neuronal damage (Fluoro-Jade marker) with significant neuroprotection conferred by Cyclo-VEGI treatment (33% increase in NeuN and 38% decrease in Fluoro-Jade).ConclusionAn antagonist for VEGF receptor-mediated signaling, Cyclo-VEGI, has shown efficacy in a broad spectrum of activity against striatal excitotoxic insult including inhibition of microgliosis, reduction in leakiness of BBB and parenchymal infiltration of plasma fibrinogen and in conferring significant protection for striatal neurons. Antagonism of VEGF-mediated activity, possibly targeting VEGF receptors on reactive microglia, is suggested as a neuroprotective mechanism against inflammatory reactivity and a novel strategy to attenuate acute excitotoxic damage.

Highlights

  • Excitotoxic brain insult is associated with extensive neuronal damage but could cause inflammatory reactivity and vascular remodeling

  • Vascular endothelial growth factor (VEGF) is a potent glial-derived stimulator of vascular remodeling in various tissues with both the VEGF receptor-1 (VEGFR-1) (Flt-1) and VEGFR-2 (KDR/Flk-1)-type receptors expressed by endothelial cells

  • TtFriimgatuear-ldeine1jpeecntidoennt gliosis and effects of Cyclo-VEGI on microgliosis, astrogliosis and vascular endothelial growth factor (VEGF) expression at 1 d post quinolinic acid (QUIN)-intrasTime-dependent gliosis and effects of Cyclo-VEGI on microgliosis, astrogliosis and VEGF expression at 1 d post QUIN-intrastriatal injection. (A) Representative staining for microglia (ED1 marker) and astrocytes (GFAP marker) at 6 hr, 1 d and 7 d QUIN-injection; typical marker immunoreactivities for control PBS (7 d injection) are shown

Read more

Summary

Introduction

Excitotoxic brain insult is associated with extensive neuronal damage but could cause inflammatory reactivity and vascular remodeling. The effects of the vascular endothelial growth factor (VEGF) inhibitor, Cyclo-VEGI on expression of VEGF, microgliosis and astrogliosis, blood-brain barrier (BBB) integrity and neuronal viability have been studied following intra-striatal injection of the excitotoxin, quinolinic acid (QUIN). Excitotoxic insult directly induces neuronal damage through activation of glutamate subtype receptors, results from several studies have suggested excitotoxin-induced inflammatory processes could indirectly contribute to loss of neuron viability [3,4,5,6,7]. Glial-derived factors can cause rapid changes in vascular processes and altered vasculature is a prominent feature of inflammatory responses in pathological conditions including excitotoxicity [14]. VEGF-dependent signaling in brain has been associated with both neuroprotection and neurotoxicity [19,20,21] which could reflect differential effects of the factor in binding to VEGF receptors on neurons, blood vessels or glial cells

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.