Abstract

BackgroundThe IL-6 cytokine family, with its crucial and pleiotropic intracellular signaling pathway STAT3, is a promising target for treating vasoproliferative retinal diseases. Previous research has shown that IL-6 cis-signaling (via membrane-bound receptors) and trans-signaling (via soluble receptors) can have distinct effects on target cells, leading to their application in various disease treatments. While IL-6 has been extensively studied, less is known about the angiogenic effects of IL-11, another member of the IL-6 family, in the retina. Therefore, the aim of this study was to characterize the effects of IL-11 on retinal angiogenesis.Main textIn vitreous samples from proliferative diabetic retinopathy (PDR) patients, elevated levels of IL-11Rα, but not IL-11, were detected. In vitro studies using vascular endothelial cells revealed distinct effects of cis- and trans-signaling: cis-signaling (IL-11 alone) had antiangiogenic effects, while trans-signaling (IL-11 + sIL-11Rα) had proangiogenic and pro-migratory effects. These differences can be attributed to their individual signaling responses and associated transcriptomic changes. Notably, no differences in cis- and trans-signaling were detected in primary mouse Müller cell cultures. STAT3 and STAT1 siRNA knockdown experiments revealed opposing effects on IL-11 signaling, with STAT3 functioning as an antiproliferative and proapoptotic player while STAT1 acts in opposition to STAT3. In vivo, both IL-11 and IL-11 + sIL-11Rα led to a reduction in retinal neovascularization. Immunohistochemical staining revealed Müller cell activation in response to treatment, suggesting that IL-11 affects multiple retinal cell types in vivo beyond vascular endothelial cells.ConclusionsCis- and trans-signaling by IL-11 have contrasting angiomodulatory effects on endothelial cells in vitro. In vivo, cis- and trans-signaling also influence Müller cells, ultimately determining the overall angiomodulatory impact on the retina, highlighting the intricate interplay between vascular and glial cells in the retina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.