Abstract
Vascular endothelial growth factor (VEGF) is a potent regulator of vascular function through its control of multiple endothelial cell functions. In addition to its key role in vascularization, VEGF has recently been shown to have neurotrophic activity during hypoxic stress. In the central and peripheral motor nervous system, VEGF treatment increased neuronal vascularization and perfusion, as well as having direct trophic effects on neurons and Schwann cells. However, the role of VEGF in the sensory nervous system remains unclear. To characterize the differential effects of VEGF on endothelial cells and neurons in sensory ganglia, we used explanted mouse dorsal root ganglia (DRG), a culture system containing neurons and endothelial cells in close apposition. We show that VEGF is expressed by neurons and satellite cells, but not by endothelial cells or pericytes. On the other hand, the tyrosine kinase VEGF receptor VEGFR-2 was robustly expressed by endothelial cells throughout the extensive DRG capillary network, but not found at either the transcript or protein level in sensory neurons or other nonendothelial cells of the DRG. Both soluble receptor sequestration of VEGF and small molecule kinase inhibition of VEGFR-2 signaling rapidly disrupted the connectivity, branching, and structural integrity of the capillary network of embryonic DRG; this effect was no longer evident postnatally. However, VEGF inhibition showed no detectable effect on neuronal health at any stage analyzed. These data suggest that endogenous VEGF is a strict requirement for vascular, but not neuronal, maintenance in developing sensory ganglia.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have