Abstract
To prevent the spread of COVID-19, China implemented large-scale lockdown measures in early 2020, resulting in a marked reduction in human activities over a short period. Studies have explored environmental changes during lockdowns, lacking analysis of response of net primary productivity (NPP) to lockdowns, especially for diverse vegetation types. Correlation between NPP and impact factors during lockdowns remains unclear. Through Google Earth Engine, we evaluated spatial-temporal changes in spring NPP at multiple scales during lockdown period (LD, 2020) compared with unlocked period (UL, 2017–2019) by remote sensing data in urban areas of China. Changes in four impact factors, aerosol optical depth (AOD) and photosynthetically active radiation (PAR) (via remote sensing data), alongside temperature (TEM) and precipitation (PRE) (via meteorological data) were explored. Additionally, geodetector, a valuable statistical tool for detecting the driving ability of various elements, was employed to explore the underlying causes of vegetation changes during LD. In the spring of LD: 1) National urban NPP generally increased (+6.50 %), notably in Northeast China (NE), North China (N) and East China (E). Besides, overall urban AOD decreased (−3.64 %), notably in N and Central China (C). National urban PAR increased (+2.7 %), particularly in C and Northwest China (NW). However, overall urban TEM (−0.06 %) and PRE (−1.21 %) changed negatively. 2) NPP in all three vegetation types in urban areas enhanced, with change rates: croplands > forests > grasslands. Evident enhancements occurred in the forests and croplands in N, and the grasslands in NE. 3) Through geodetector, during LD, AOD (q = 0.223) and TEM (q = 0.272) emerged as the dominant factors for NPP. Compared with UL, the explanatory power of AOD and PAR on NPP increased during LD. This study provides valuable insights into understanding the effects of short-term human activities on vegetation productivity, offering reference for the formulation of ecological and environmental policies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have