Abstract
Riparian areas have not responded consistently to grazing systems, suggesting that more knowledge is needed to explain how different areas respond to specific stresses. Several studies were conducted to determine herbaceous plant response to simulated grazing on riparian areas. One low-elevation redtop (Agrostis stolonifera L.) site in Oregon and 2 high-elevation sedge (Carex spp. L.) sites in Idaho were studied for 3 years. Several combinations of defoliation, compaction, nutrient return, and season of use were examined. The redtop community responded to spring, fall, or spring-fall defoliations by maintaining or increasing the following year's aboveground biomass production. The sedge communities maintained or decreased the following years's biomass production after spring, mid summer, or late summer defoliations. An increase in forbs occurred in 1 sedge community following spring defoliations to 1- or 5-cm residual stubble heights. The most consistent plant response among areas was reduction in height growth and biomass production following compaction treatments. When both defoliation and compaction are considered, it appears that spring, fall, or spring and fall grazing to a 5-cm stubble height on the redtop site would not decrease riparian herbage production. In contrast, when defoliation, compaction, and nutrient return effects are considered in the mountain meadow sedge-dominated communities, grazing once annually during the growing season to a 5-cm stubble height in the spring, or to a 10-cm stubble height in late summer, or at a utilization rate exceeding 30% of the total annual biomass production can reduce herbage production significantly. Results suggest that many of the land management agency riparian guidelines would maintain biomass productivity in these sedge-dominated communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.