Abstract

At centennial to millennial timescales, little is known of C 3 and C 4 plant productivity’s responses to past regional climate changes and the dominant forcing factors during the Holocene, although large-scale changes in glacial-interglacial periods have been attributed to changes in aridity, temperature, and CO 2 concentration. We investigated the δ 13C of TOC, C/N ratios, and pollen in samples from a wetland on Jeju Island, Korea. The bulk isotopic signal ranging from −17‰ to −29‰ was partitioned into C 3 and C 4 plant signals by using a binary mixing model and calculating separate organic carbon-accumulation rates for C 3 and C 4 plants (OCAR 3 and OCAR 4) during the last 6500 years. Pollen data indicated that the temperate deciduous broadleaved trees replaced grassland dominated by Artemisia, dry-tolerant grass, and further expanded in the maar. The long-term decreasing trend of Artemisia-dominated grassland was similar to those of δ 13C values and OCAR 4. The multi-centennial to millennial variability superimposed on the gradual increasing trend of OCAR 3 was inversely correlated with those of the sea surface temperature (SST) in the western tropical Pacific (WTP) and El Niño-Southern Oscillation (ENSO) activity, suggesting that C 3 plants have stronger sensitivity to regional climate change driven by oceanic forcing. Our data suggest that vegetation changes in a coastal area in East Asia were affected by monsoonal changes coupled with SST in WTP and ENSO activity. The vegetation change on Jeju Island varied quite differently from change in the westerly pathway, suggesting only a weak influence from high-latitude-driven atmospheric circulation changes. We conclude that centennial- to millennial-scale climate changes in coastal regions of East Asia during the mid- to late-Holocene may have been mainly controlled by low-latitudinal oceanic forcing, including forcing by SST and ENSO activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call