Abstract
During the last few years, conjugate-gradient methods have been found to be the best available tool for large-scale minimization of nonlinear functions occurring in geophysical applications. While vectorization techniques have been applied to linear conjugate-gradient methods designed to solve symmetric linear systems of algebraic equations, arising mainly from discretization of elliptic partial differential equations, due to their suitability for vector or parallel processing, no such effort was undertaken for the nonlinear conjugate-gradient method for large-scale unconstrained minimization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have