Abstract

RNA interference is a mechanism of posttranslational (at the level of mRNA) gene silencing. Sequence-specific mRNA degradation is realized with the help of small interfering RNAs produced by processing of a precursor using Dicer, an enzyme from the RNAse III family. This mechanism is now widely used in vitro on cultures of mammalian cells in order to elucidate functions of individual genes by gene specific knockdown. Analogs of small interference RNAs are intensely expressed during embryogenesis. The mechanism of RNA interference plays an especially important role in embryogenesis of invertebrates. Identification of the functions of small noncoding RNAs is essential for understanding the genetic mechanisms underlying individual developmental stages. In order to integrate small interference RNAs in mammalian cells, various systems have been developed that allow both transient (for 48 h) and stable expression in vitro. These systems are considered in the present review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call