Abstract

Small interfering RNA (siRNA) duplexes induce the specific cleavage of target RNAs in mammalian cells. Their involvement in down-regulation of gene expression is termed RNA interference (RNAi). It is widely believed that RNAi predominates in the cytoplasm. We report here the co-existence of cytoplasmic and nuclear RNAi phenomena in primary human myotonic dystrophy type 1 (DM1) cells by targeting myotonic dystrophy protein kinase (DMPK) mRNAs. Heterozygote DM1 myoblasts from a human DM1 fetus produce a nuclear retained mutant DMPK transcript with large CUG repeats ( approximately 3,200) from one allele of the DMPK gene and a wild type transcript with 18 CUG repeats, thus providing for both a nuclear and cytoplasmic expression profile to be evaluated. We demonstrate here for the first time down-regulation of the endogenous nuclear retained mutant DMPK mRNAs targeted with lentivirus-delivered short hairpin RNAs (shRNAs). This nuclear RNAi(-like) phenomenon was not observed when synthetic siRNAs were delivered by cationic lipids, suggesting either a link between processing of the shRNA and nuclear import or a separate pathway for processing shRNAs in the nuclei. Our observation of simultaneous RNAi on both cytoplasmic and nuclear retained DMPK has important implications for post-transcriptional gene regulation in both compartments of mammalian cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.