Abstract

A single-source surface integral equation (SS-SIE) for transverse electric (TE) scattering from cylindrical multilayered objects is proposed in this paper. By incorporating the differential surface admittance operator (DSAO) and recursively applying the surface equivalence theorem from innermost to outermost boundaries, an equivalent model with only electric current density on the outermost boundary can be obtained. In addition, an integration approach is proposed, where the small argument expansion of the Hankel function is used to evaluate the singular and nearly singular integrals. Compared with other SIEs, such as the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation, the computational expenditure is reduced for multilayered structures because only a single source is needed on the outermost boundary. As shown in the numerical results, the proposed method generates only 19% of unknowns, uses 26% of memory, and requires 29% of the CPU time of the PMCHWT formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.