Abstract

Visceral leishmaniasis (VL) is a vector-borne disease transmitted by phlebotomine sand flies and remains the most serious form of the disease with no available human vaccine. Repeatedly, studies have demonstrated the immunogenicity and protective efficacy of a number of sand fly salivary proteins against cutaneous and visceral leishmaniasis. All Leishmania species including agents of VL are co-deposited into the skin together with vector saliva. Generally, the immune response to a protective salivary protein in vaccinated animals is rapid and possibly acts on the parasites soon after delivery into the skin by the bite of an infective sand fly. This is followed by the development of a stronger Leishmania-specific immunity in saliva-vaccinated animals compared to controls. Considering that several of the most efficacious protective molecules were identified from a proven vector of VL, we put forward the notion that a combination vaccine that includes a Leishmania antigen and a vector salivary protein has the potential to improve vaccine efficacy by targeting the parasite at it most vulnerable stage just after transmission.

Highlights

  • Visceral leishmaniasis (VL), known as kala-azar, is a systemic vector-borne neglected disease that is fatal if left untreated

  • Over 90% of VL cases occur in six countries (Bangladesh, Brazil, Ethiopia, India, South Sudan, and Sudan) where about 300 million people are at risk of infection [1, 2]

  • VL caused by L. donovani is prevalent in East Africa and the Indian sub-continent and is considered an anthroponosis, while VL caused by L. infantum is prevalent in South Europe, North Africa, parts of the Middle East and Latin America [3,4,5,6]

Read more

Summary

PUBLIC HEALTH

Vector saliva in vaccines for visceral leishmaniasis: a brief encounter of high consequence?. The immune response to a protective salivary protein in vaccinated animals is rapid and possibly acts on the parasites soon after delivery into the skin by the bite of an infective sand fly. This is followed by the development of a stronger Leishmania-specific immunity in saliva-vaccinated animals compared to controls. Considering that several of the most efficacious protective molecules were identified from a proven vector of VL, we put forward the notion that a combination vaccine that includes a Leishmania antigen and a vector salivary protein has the potential to improve vaccine efficacy by targeting the parasite at it most vulnerable stage just after transmission

BACKGROUND
VECTOR SALIVA IN A VACCINE FOR VISCERAL LEISHMANIASIS
Salivary molecule
Animal model
Findings
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.