Abstract

BackgroundProgress in developing artificial intelligence (AI) products represented by large language models (LLMs) such as OpenAI’s ChatGPT has sparked enthusiasm for their potential use in mental health practice. However, the perspectives on the integration of LLMs within mental health practice remain an underreported topic. Therefore, this study aimed to explore how mental health and AI experts conceptualize LLMs and perceive the use of integrating LLMs into mental health practice.MethodIn February–April 2024, online semi-structured interviews were conducted with 21 experts (12 psychiatrists, 7 mental health nurses, 2 researchers in medical artificial intelligence) from four provinces in China, using snowballing and purposive selection sampling. Respondents’ discussions about their perspectives and expectations of integrating LLMs in mental health were analyzed with conventional content analysis.ResultsFour themes and eleven sub-themes emerged from this study. Firstly, participants discussed the (1) practice and application reform brought by LLMs into mental health (fair access to mental health services, enhancement of patient participation, improvement in work efficiency and quality), and then analyzed the (2) technological-mental health gap (misleading information, lack of professional nuance and depth, user risk). Based on these points, they provided a range of (3) prerequisites for the integration of LLMs in mental health (training and competence, guidelines for use and management, patient engagement and transparency) and expressed their (4) expectations for future developments (reasonable allocation of workload, upgrades and revamps of LLMs).ConclusionThese findings provide valuable insights into integrating LLMs within mental health practice, offering critical guidance for institutions to effectively implement, manage, and optimize these tools, thereby enhancing the quality and accessibility of mental health services.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.