Abstract

The (σ, ω) model in the mean-field approximation where the meson fields are treated classically, describes much of observed nuclear structure and has been employed to describe the nuclear equation of state up to the quark-gluon phase transition. The acceleration of the meson sources, for example, in relativistic heavy-ion collisions, should result in bremsstrahlung-like radiation of the meson fields. The many mesons emitted serve to justify the use of classical meson fields. The slowing of the nuclei during the collision is modeled here as a smooth transition from initial to final velocity. Under ultra-relativistic conditions, vector radiation dominates. The angular distribution of energy flux shows a characteristic shape. It appears that if the vector meson field couples to the conserved baryon current, independent of the baryonic degrees of freedom, this mechanism will contribute to the radiation seen in relativistic heavy-ion collisions. The possible influence of the quark-gluon plasma is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.