Abstract

The magnetic reversal of epitaxial Fe/Cr/Fe trilayer samples grown on GaAs is studied. In wedged samples both long and short period coupling oscillations associated with Ruderman–Kittel–Kasuya–Yosida (RKKY) coupling in Cr are seen in the easy axis saturation fields. By using vector vibrating sample magnetometry and both longitudinal and transverse magneto-optical Kerr effect magnetometry we are able to determine the exact reversal path of both the magnetic layers. Changes in the reversal behavior are seen with sub-monolayer changes of the thickness of the Cr interlayer. The two main reversal paths are described in terms of whether the reversal is dominated by bilinear RKKY coupling, which leads to an antiparallel state at remanence or by biquadratic coupling which leads to a 90 degree alignment of layers at remanence. The changing reversal behaviour is discussed with respect to the possibility of using such systems for multilayer memory applications and, in particular, the limits on the required accuracy of the sample growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.