Abstract
In response to the urgent demand for innovative bone regeneration solutions, the focus of this study is to develop and characterize Mg, Sr, Zn-substituted calcium phosphate scaffolds that replicate the trabecular architecture of cancellous bone. Ion substitution represents a promising approach to improve the biological effectiveness of calcium phosphates and composite materials used in bone tissue engineering applications. Porous scaffolds mimicking the natural bone structure were additively manufactured from the photosensitive ceramic suspensions for vat photopolymerization using digital light processing. The impact of the selected trace elements (0, 1 and 5 mol.% substitution) and the sintering temperature (900, 1000, 1100, 1200, and 1300 °C) was investigated in relation to the obtained crystalline phase content, microstructure, elemental distribution, thermal stability, and mechanical properties. After sintering, in addition to hydroxyapatite, β-tricalcium phosphate was detected as a result of the added trace elements in the calcium-deficient hydroxyapatite used as a starting powder. The obtained scaffolds exhibited uniform distribution of the trace elements, and they feature 3D-designed porosity predominantly ranged from 10 to 900 μm in diameter, with an average pore size of 546.25 ± 10.95 μm. The total porosity of scaffolds was 76.24 ± 1.32 vol% and an average wall thickness of 217.03 ± 8.98 μm, closely resembling the morphology of cancellous bone tissue. The mechanical properties of the scaffolds sintered at 1100 °C, 1200 °C, and 1300 °C were in line with those typically observed in trabecular bone. The study demonstrates the feasibility of using custom made bioactive hydroxyapatite powders together with vat photopolymerization to design the porosity and properties of the bone scaffolds on demand, based on the requirements of individual bone defects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have