Abstract
Vasopressin (AVP) plays an important role in regulation of astrocytic, but not neuronal, water content and cell volume during hydro-osmotic challenge. To investigate the intracellular mechanism(s) signaling this response, [Ca(2+)](i) was measured fluorometrically in cultured cerebrocortical astrocytes and neurons, obtained from neonatal and fetal mouse brains, and matured during the culturing period. In astrocytes, [Ca(2+)](i) increased with an EC(50) of between 10(-10) and 10(-9) M AVP, the maximum increase was approximately 100 nM, and the response was independent of extracellular Ca(2+), identifying the receptor as being of the V1b/V3 subtype. In contrast, AVP had no effect on [Ca(2+)](i) in cortical neurons. This cellular difference is consistent with the ability of AVP to increase water permeability in astrocytes but not in neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.