Abstract

Neural activity plays roles in the later stages of development of cortical excitatory neurons, including dendritic and axonal arborization, remodeling, and synaptogenesis. However, its role in earlier stages, such as migration and dendritogenesis, is less clear. Here we investigated roles of neural activity in the maturation of cortical neurons, using calcium imaging and expression of prokaryotic voltage-gated sodium channel, NaChBac. Calcium imaging experiments showed that postmigratory neurons in layer II/III exhibited more frequent spontaneous calcium transients than migrating neurons. To test whether such an increase of neural activity may promote neuronal maturation, we elevated the activity of migrating neurons by NaChBac expression. Elevation of neural activity impeded migration, and induced premature branching of the leading process before neurons arrived at layer II/III. Many NaChBac-expressing neurons in deep cortical layers were not attached to radial glial fibers, suggesting that these neurons had stopped migration. Morphological and immunohistochemical analyses suggested that branched leading processes of NaChBac-expressing neurons differentiated into dendrites. Our results suggest that developmental control of spontaneous calcium transients is critical for maturation of cortical excitatory neurons in vivo: keeping cellular excitability low is important for migration, and increasing spontaneous neural activity may stop migration and promote dendrite formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.