Abstract
Non-hypotensive hypovolemia simulated with oscillatory lower body negative pressure in the range of -10 to -20 mmHg is associated with vasoconstriction {increase in total peripheral vascular resistance (TPVR)}. Due to the mechanical stiffening of vessels, there is a disjuncture of mechano-neural coupling at the level of arterial baroreceptors which has not been investigated. The study was designed to quantify both the cardiac and vascular arms of the baroreflex using an approach based on Wiener-Granger causality (WGC) - partial directed coherence (PDC). Thirty-three healthy human volunteers were recruited and continuous heart rate and blood pressure {systolic (SBP), diastolic (DBP), and mean (MBP)} were recorded. The measurements were taken in resting state, at -10 mmHg (level 1) and -15 mmHg (level 2). Spectral causality - PDC was estimated from the MVAR model in the low-frequency band using the GMAC MatLab toolbox. PDC from SBP and MBP to RR interval and TPVR was calculated.The PDC from MBP to RR interval showed no significant change at -10 mmHg and -15 mmHg. No significant change in PDC from MBP to TPVR at -10 mmHg and -15 mmHg was observed. Similar results were obtained for PDC estimation using SBP as input. However, a significant increase in TPVR from baseline at both levels of oscillatory LBNP (p-value <0.001). No statistically significant change in PDC from blood pressure to RR interval and blood pressure to TPVR implies that vasoconstriction is not associated with activation of the arterial baroreflex in ≤-15 mmHg LBNP. Thereby, indicating the role of cardiopulmonary reflexes during the low level of LBNP simulated non-hypotensive hypovolemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.