Abstract

α2-Adrenoceptor-activation lowers central sympathetic output, peripheral, vesicular norepinephrine release, epinephrine secretion, and modulates vascular tension. We previously demonstrated that α2-adrenoceptor-mediated inhibition of basal norepinephrine release was not reflected in plasma unless re-uptake through the norepinephrine transporter (NET) was blocked. Tyramine activates reverse norepinephrine transport through NET. Here we tested the hypothesis that tyramine, by engaging NET in release, also blocks re-uptake, and therefore allows manipulation of pre-junctional α2-adrenoceptors to directly regulate norepinephrine overflow to plasma. We compared in anesthetized spontaneously hypertensive rats (SHRs) and normotensive controls (WKYs), the effect of α2-adrenoreceptor antagonist (L-659,066) and/or agonist (clonidine) on norepinephrine overflow and increase in total peripheral vascular resistance (TPR) evoked by tyramine-infusion (1.26 μmol/min/kg, 15 min) and epinephrine secretion activated by the surgical stress. TPR was computed as blood pressure divided by cardiac output, recorded as ascending aortic flow. Plasma catecholamine concentrations after tyramine were higher in SHRs than WKYs. Pre-treatment with L-659,066 increased the catecholamine concentrations in WKYs, but only if combined with clonidine in SHRs. Clonidine alone reduced tyramine-induced norepinephrine overflow in SHRs, and epinephrine in both strains. Tyramine-induced increase in TPR was not different after clonidine, eliminated after L-659,066 and L-659,066 + clonidine in WKYs, but only after L-659,066 + clonidine in SHRs. We conclude that tyramine-infusion does allow presynaptic regulation of vesicular release to be accurately assessed by measuring differences in plasma norepinephrine concentration. Our results indicate that presynaptic α2-adrenoceptor regulation of norepinephrine release from nerve vesicles and epinephrine secretion is dysfunctional in SHRs, but can be restored by clonidine.

Highlights

  • Through their ability to inhibit norepinephrine release, the α2adrenoceptors (AR) represent a last line of defense against sympathetic hyperactivity

  • Since L-659,066 does not cross the blood-brain barrier, these results showed that inhibition of peripheral α2AR enhanced tyramine-induced overflow of norepinephrine in WKYs, whereas the elevated overflow in spontaneously hypertensive rats (SHRs) was not controlled by peripheral α2AR

  • We concluded that by engaging norepinephrine transporter (NET) in release, tyramine prevented norepinephrine re-uptake, and, through that, allowed influence of presynaptic control to be demonstrated as differences in norepinephrine overflow to plasma

Read more

Summary

Introduction

Through their ability to inhibit norepinephrine release, the α2adrenoceptors (AR) represent a last line of defense against sympathetic hyperactivity. This is true for the release of catecholamines from the adrenal medulla. Epinephrine is directly released into plasma when the adrenal medulla is stimulated, plasma epinephrine concentration reflects release. Norepinephrine from sympathetic nerve endings is released into the synapse, where it activates postsynaptic α1AR, α2AR, and/or βAR, but some norepinephrine escapes these receptors and may modulate transmitter release by activating presynaptic AR. A fraction of the released norepinephrine enters the circulation, and the plasma norepinephrine concentration does not directly reflect the amount released.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call