Abstract

The placenta has an extraordinary metabolic rate with high oxygen consumption. Extravillous cytotrophoblast cells (EVT) metabolism and function are critical to sustain their invasive phenotype supporting fetal development. Deficient EVT function underlies pregnancy complications as preeclampsia (PE) and fetal growth restriction (FGR). The vasoactive intestinal peptide (VIP) promotes human cytotrophoblast cell migration and invasion through mTOR signaling pathways suggesting its crucial role during placentation. Here we explored fatty acid uptake as well as lipid and glucose metabolism in human-derived cytotrophoblast cell function upon VIP stimulation. We found that VIP induced long chain fatty acid (LCFAs) uptake along with the expression of FATP2 transporter, CPT1 fatty acid oxidation (FAO)-rate limiting step importer, and lipid droplet accumulation. VIP induced the expression of glucose 6-P-dehydrogenase, a rate-limiting enzyme of the pentose phosphate pathway (PPP) and pyruvate dehydrogenase complex enzyme DLAT E2, without altering lactate secretion. This metabolic rewiring of trophoblast cells induced by VIP takes place without compromising mitochondrial function or reactive oxygen species (ROS) production. Moreover, cytotrophoblast cell migration induced by VIP required the three glycolysis, oxidative phosphorylation (OXPHOS) and FAO pathways. Our results provide evidence supporting VIP as a metabolic regulatory peptide in cytotrophoblast cells sustaining proper placentation and fetal growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.