Abstract

The role of fatty acid transport protein 1 (FATP1) and FATP4 in facilitating adipocyte fatty acid metabolism was investigated using stable FATP1 or FATP4 knockdown (kd) 3T3-L1 cell lines derived from retrovirus-delivered short hairpin RNA (shRNA). Decreased expression of FATP1 or FATP4 did not affect preadipocyte differentiation or the expression of FATP1 (in FATP4 kd), FATP4 (in FATP1 kd), fatty acid translocase, acyl-coenzyme A synthetase 1, and adipocyte fatty acid binding protein but did lead to increased levels of peroxisome proliferator-activated receptor gamma and CCAAT/enhancer binding protein alpha. Both FATP1 and FATP4 kd adipocytes exhibited reduced triacylglycerol deposition and corresponding reductions in diacylglycerol and monoacylglycerol levels compared with control cells. FATP1 kd adipocytes displayed an approximately 25% reduction in basal (3)H-labeled fatty acid uptake and a complete loss of insulin-stimulated (3)H-labeled fatty acid uptake compared with control adipocytes. In contrast, FATP4 kd adipocytes as well as HEK-293 cells overexpressing FATP4 did not display any changes in fatty acid influx. FATP4 kd cells exhibited increased basal lipolysis, whereas FATP1 kd cells exhibited no change in lipolytic capacity. Consistent with reduced triacylglycerol accumulation, FATP1 and FATP4 kd adipocytes exhibited enhanced 2-deoxyglucose uptake compared with control adipocytes. These findings define unique and distinct roles for FATP1 and FATP4 in adipose fatty acid metabolism.

Highlights

  • The role of fatty acid transport protein 1 (FATP1) and FATP4 in facilitating adipocyte fatty acid metabolism was investigated using stable FATP1 or FATP4 knockdown 3T3-L1 cell lines derived from retrovirus-delivered short hairpin RNA

  • FATP1 kd and FATP4 kd cell lines derived from lentivirusdelivered short hairpin RNA (shRNA) targeting either protein

  • An essentially complete loss of FATP1 expression was observed in cells expressing FATP1 sequence-specific shRNA (FATP1 kd), indicating that the protein is not required for adipose conversion

Read more

Summary

Introduction

The role of fatty acid transport protein 1 (FATP1) and FATP4 in facilitating adipocyte fatty acid metabolism was investigated using stable FATP1 or FATP4 knockdown (kd) 3T3-L1 cell lines derived from retrovirus-delivered short hairpin RNA (shRNA). Decreased expression of FATP1 or FATP4 did not affect preadipocyte differentiation or the expression of FATP1 (in FATP4 kd), FATP4 (in FATP1 kd), fatty acid translocase, acyl-coenzyme A synthetase 1, and adipocyte fatty acid binding protein but did lead to increased levels of peroxisome proliferator-activated receptor g and CCAAT/enhancer binding protein a Both FATP1 and FATP4 kd adipocytes exhibited reduced triacylglycerol deposition and corresponding reductions in diacylglycerol and monoacylglycerol levels compared with control cells. Consistent with reduced triacylglycerol accumulation, FATP1 and FATP4 kd adipocytes exhibited enhanced 2-deoxyglucose uptake compared with control adipocytes These findings define unique and distinct roles for FATP1 and FATP4 in adipose fatty acid metabolism.—Lobo, S., B.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call