Abstract
The Great Wall, a World Heritage Site and a vertical wall habitat, is under threat of soil erosion. The role of vascular plants and biocrust in controlling soil erosion has attracted attention, yet our knowledge of the underlying mechanism is limited, and there is a lack of systematic strategies for erosion prevention and control. In this study, we quantified the vascular plant community functional composition (including species diversity, functional diversity, and community-weighted mean), biocrust coverage, and soil erosion levels associated with seven different zones (lower, middle, and upper zones on East and West faces, plus wall crest) of the Great Wall. We then employed a combination of linear regression analysis, random forest model, and structural equation model to evaluate the individual and combined effects, as well as the direction and relative importance of these factors in reducing soil erosion. The results indicated that the vascular plant species richness, species diversity, functional richness, community-weighted mean, and moss crust coverage decreased significantly from the crest to the lower zone of the Great Wall (P < 0.05), and were negatively correlated with the soil erosion area and depth on both sides of the Great Wall (P < 0.05). This suggests that higher zones on the wall favored the colonization and growth of biocrusts and vascular plants and that biocrusts and vascular plants reduced soil erosion on the wall. Based on these findings, we propose a “restoration framework” for managing soil erosion on walls, based on biocrust and vascular plant communities (namely target species selection, plant community construction, biocrust inoculation, and maintenance of community stability), which aims to address the urgent need for more effective soil erosion prevention and control strategies on the Great Wall and provide practical methods that practitioners can utilize.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.