Abstract

A number of oxylipins have been described as endogenous PPAR ligands. The very short biological half-lives of oxylipins suggest roles as autocrine or paracrine signaling molecules. While coronary arterial atherosclerosis is the root of myocardial infarction, aortic atherosclerotic plaque formation is a common readout of in vivo atherosclerosis studies in mice. Improved understanding of the compartmentalized sources of oxylipin PPAR ligands will increase our knowledge of the roles of PPAR signaling in diverse vascular tissues. Here, we performed a targeted lipidomic analysis of ex vivo-generated oxylipins from porcine aorta, coronary artery, pulmonary artery and perivascular adipose. Cyclooxygenase (COX)-derived prostanoids were the most abundant detectable oxylipin from all tissues. By contrast, the coronary artery produced significantly higher levels of oxylipins from CYP450 pathways than other tissues. The TLR4 ligand LPS induced prostanoid formation in all vascular tissue tested. The 11-HETE, 15-HETE, and 9-HODE were also induced by LPS from the aorta and pulmonary artery but not coronary artery. Epoxy fatty acid (EpFA) formation was largely unaffected by LPS. The pig CYP2J homologue CYP2J34 was expressed in porcine vascular tissue and primary coronary artery smooth muscle cells (pCASMCs) in culture. Treatment of pCASMCs with LPS induced a robust profile of pro-inflammatory target genes: TNFα, ICAM-1, VCAM-1, MCP-1 and CD40L. The soluble epoxide hydrolase inhibitor TPPU, which prevents the breakdown of endogenous CYP-derived EpFAs, significantly suppressed LPS-induced inflammatory target genes. In conclusion, PPAR-activating oxylipins are produced and regulated in a vascular site-specific manner. The CYP450 pathway is highly active in the coronary artery and capable of providing anti-inflammatory oxylipins that prevent processes of inflammatory vascular disease progression.

Highlights

  • Peroxisome proliferator-activated receptors (PPARs) can be activated by a diverse group of endogenous fatty acid mediators including those produced from cyclooxygenase (COX), lipoxygenase and CYP450 enzymatic pathways [1]

  • We have performed a lipidomic analysis on large vessels and perivascular adipose from the pig

  • Prostanoids were the dominant detectable species from all tissue, the coronary artery produced considerably more oxylipins in terms of species and amounts when compared to the aorta and pulmonary artery, in particular those from CYP450 pathways

Read more

Summary

Introduction

Peroxisome proliferator-activated receptors (PPARs) can be activated by a diverse group of endogenous fatty acid mediators including those produced from cyclooxygenase (COX), lipoxygenase and CYP450 enzymatic pathways [1]. These COX, lipoxygenase and CYP450 enzymes metabolize arachidonic acid and related polyunsaturated fatty acids, linoleic acid (LA), docosahexaenoic acid. Cells 2020, 9, 1096; doi:10.3390/cells9051096 www.mdpi.com/journal/cells (DHA) and eicosapentaenoic acid (EPA) into series of biologically active oxylipin mediators [2,3,4]. The PUFA-utilizing CYP450s metabolize fatty acids into series of oxylipin mediators through a combination of either epoxidation or lipoxygenase-like or ω- and ω-1-hydroxylation [2,3]. Using arachidonic acid as an example, CYP2J2 can produce both epoxyeicosatrienoic acids (EETs) and

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call