Abstract

Vascular endothelial growth factor (VEGF) is a potent and specific endothelial cell mitogen involved in normal and pathological angiogenesis. Our group recently reported that, among the several VEGF isoforms, VEGF189 (V189) is selectively induced in decidual endometrial cells during the mid-late phase of the menstrual cycle, together with polymorphonuclear neutrophil (PMN) influx. We thus compared the effects of various VEGF isoforms on PMN migration in vitro, and the mechanisms involved. In transmigration and under-agarose assays, V189 was both chemotactic and chemokinetic for PMN, while VEGF165 (V165) was only chemokinetic. The chemokinetic effect of V189 for PMN was blocked by neutralizing anti-VEGF antibodies, but not by neutralizing anti-KDR antibodies, suggesting that the Flt-1 VEGF receptor that is expressed in PMN mediates these effects. Flow cytometric analysis of several adhesion molecules at the PMN surface showed that all VEGF isoforms slightly upregulated β1- and β2-integrins and PECAM, and downregulated L-selectin; all these molecules are activation markers. The involvement of β1-integrins was further supported by the ability of blocking antibodies to reduce VEGF-induced PMN migration. As human PMN can secrete several cytokines and growth factors, the selective secretion of VEGF isoforms was also further examined. RT-PCR analysis showed that V165 mRNA was more strongly expressed than V189 mRNA. Conversely, the major protein isoform secreted after optimal PMN degranulation was V189, which was located in both azurophilic and specific granules. PMN-derived VEGF can thus modulate PMN migration. This autocrine amplification mechanism would allow sustained VEGF release to occur at inflammatory sites, and may contribute to both normal and pathological angiogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.