Abstract

Background: Vascular endothelial growth factor (VEGF) may be relevant to bipolar disorder (BD) and brain structure. We evaluated VEGF rs699947 single-nucleotide polymorphism in relation to structural neuroimaging phenotypes in youth BD. Methods: We collected 3 T anatomical magnetic resonance images from 154 youth (79 BD and 75 healthy control [HC]) genotyped for VEGF rs699947. The participants were age (BD = 17.28 ± 1.40 and HC = 17.01 ± 1.83, t = -1.02, p = 0.31) and sex (BD = 63.3% females and HC = 52.0% females, χ2 = 2.01, p = 0.16) matched. Cortical thickness, surface area (SA), and volume were examined by region-of-interest (ROI) and vertex-wise analyses using general linear models (GLMs). ROI investigations selected for the prefrontal cortex (PFC), amygdala, and hippocampus. Vertex-wise analyses controlled for age, sex, and intracranial volume. Results: ROI results found lower PFC SA (p = 0.003, ηp2 = 0.06) and volume (p = 0.04, ηp2 = 0.03) in BD and a main effect of rs699947 on hippocampal volume (p = 0.03, ηp2 = 0.05). The latter two findings did not survive multiple comparisons. Vertex-wise analyses found rs699947 main effects on left postcentral gyrus volume (p < 0.001), right rostral anterior cingulate SA (p = 0.004), and right superior temporal gyrus thickness (p = 0.004). There were significant diagnosis-by-genotype interactions in the left superior temporal, left caudal middle frontal, left superior frontal, right fusiform, and right lingual gyri, and the left insular cortex. Posthoc analyses revealed the AA allele was associated with larger brain structures among HC, but smaller brain structures in BD for most clusters. Conclusions: Overall, we found preliminary evidence of divergent associations between BD and HC youth in terms of neurostructural correlates of VEGF rs699947 encompassing highly relevant frontotemporal regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call