Abstract

Bone supports animal bodies, is the place where blood is produced, and is essential for the immune system, among other important functions. The dominant inorganic component in bone is hydroxyapatite (Hap), the structure and dynamics of which still pose many unsolved puzzles. An updated understanding of HAp is of great significance to osteology, dentistry, and the development of artificial bone and other biomaterials. In this work, HAp nanoparticles were synthesized with the wet chemical precipitation method and their structure and morphologies were controlled by varying pH and adding fluoride ions by two different routes: (1) fluoride ions were added during synthesis, and (2) fluoride ions were introduced after the samples were synthesized by soaking the samples in solutions with fluoride ions. XRD and HRTEM were employed to confirm the composition and structure, while various multinuclear (1H, 19F, 31P) solid-state nuclear magnetic resonance (NMR) methods including 1D single pulse, cross-polarization under magic-angle spinning (CPMAS), and 2D heteronuclear correlation (HETCOR) were used to characterize the structure, morphology, and dynamics, validating the general core-shell morphology in these F-HAp samples. It was found that all hydroxide ions were substituted when the fluoride ion concentration was above 0.005 M. An NMR peak corresponding to water structure emerged and the bulk water peak was shifted upfield, indicating that fluoride substitution modifies both the crystalline core and the amorphous shell of F-HAp nanoparticles. With the second route of fluoride substitution, increases in soaking time or fluoride ion concentration could increase fluoride substitution in HAp, but could not achieve complete substitution. Finally, with 1H-31P CPMAS and HETCOR, it was established that there are two types of phosphorous, one in the crystalline core (PO43−) and the other in the amorphous shell (HPO42−). These results are valuable for clarifying the fluoride substitution mechanism in HAp in biomaterials or in organisms, and provide insights for developing next generation replacement materials for bone, tooth, or coating films, drug delivery systems, etc.

Highlights

  • An obvious and essential feature of vertebrate animals is that their bodies contains various types of bone

  • HAp nanoparticles were synthesized with the wet chemical precipitation method and their structure and morphologies were controlled by varying pH and adding fluoride ions by two different routes: (1) fluoride ions were added during synthesis, and (2) fluoride ions were introduced after the samples are synthesized by soaking the samples in solutions with fluoride ions

  • Compared to HAp nanoparticles synthesized in ordinary solvents, HAP nanoparticles synthesized in simulated body fluid (SBF) show less crystallinity, implying that HAp nanoparticles grown in vivo may have less crystallinity

Read more

Summary

Introduction

An obvious and essential feature of vertebrate animals is that their bodies contains various types of bone. Significant advances have been achieved in understanding their anatomic structure [1,2,3], physiological functions, and biochemical mechanisms of synthesis, repair, and aging [4,5]. These achievements have revolutionized the medical treatment of various disorders, diseases, and injuries related to bones [4,5,6,7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.