Abstract

BackgroundAnterior cruciate ligament (ACL) injury is often accompanied with medial collateral ligament (MCL) injury. Assessment of varus-valgus (V-V) instability in the ACL-deficient knee is crucial for the management of the concomitant ACL-collateral ligaments injury. We evaluated the V-V laxity and investigated the effect of additional posterior tibial load on the laxity in the ACL-deficient knee. Our hypothesis was that the V-V laxity in the ACL-deficient knee was greater than that in the intact knee and attenuated by additional posterior tibial load.MethodsEight fresh-frozen porcine knees were used, and a 6°-of-freedom (DOF) robotic system was utilized. A 5 Nm of V-V torque was applied to the intact knee, the ACL-deficient knee, and the ACL-deficient knee with 30 N of constant posterior tibial load, at 30° and 60° of flexion. Then, the 3D path in the intact knee was reproduced on the ACL-deficient knee. The total V-V angle under 5 Nm of V-V torque was assessed and compared among the three statuses. The in situ forces of the ACL under 5 Nm of varus and valgus torques, respectively, were also calculated.ResultsThe total V-V angle in the ACL-deficient knee under 5 Nm of V-V torque was significantly greater than that in the intact knee, whereas the angle in the ACL-deficient knee with 30 N of posterior tibial load was significantly smaller than that in the ACL-deficient knee and approached that in the intact knee, at both 30° and 60° of flexion. The in situ force of the ACL was approximately 30 N at 30° and 16 N at 60° of flexion under 5 Nm of both varus and valgus torques.ConclusionsThe V-V laxity in the isolated ACL-deficient knee was greater than that in the intact knee. The increased laxity was attenuated and approached that in the intact knee by adding posterior tibial load. Application of posterior tibial load is necessary for accurate assessment of V-V instability in the ACL-deficient knee. Clinically, the V-V laxity in the combined ACL-MCL or ACL-LCL injured knee may be overestimated without posterior tibial load.

Highlights

  • Anterior cruciate ligament (ACL) injury is often accompanied with medial collateral ligament (MCL) injury

  • The varus angle was significantly different among the three knee models, while the valgus angle did not show any difference

  • In situ force of the ACL The in situ force of the ACL increased in direct proportion to the amount of torque on application of V-V torque, and was approximately 30 N at 30° and 16 N at 60° of flexion under 5 Nm of both varus and valgus torques (Table 3)

Read more

Summary

Introduction

Anterior cruciate ligament (ACL) injury is often accompanied with medial collateral ligament (MCL) injury. Assessment of varus-valgus (V-V) instability in the ACL-deficient knee is crucial for the management of the concomitant ACL-collateral ligaments injury. Anterior cruciate ligament (ACL) injury is often associated with concomitant injury to other ligaments, especially the medial collateral ligament (MCL) (Majewski et al 2006). Grant et al (2012) recommended MCL repair or reconstruction in case of persistent valgus instability after conservative treatment. Assessment of varus-valgus (V-V) instability in the ACLdeficient knee is critical, as persistent V-V instability with ACL injury is an indication for operative treatment either prior to or concomitantly with ACL reconstruction. Physical examination for the assessment of V-V instability in the ACL-deficient knee is crucial for the management of these patients

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call