Abstract

This paper investigates the biomechanical benefits of using hybrid constructs that combine cannulated screws with tension band wiring (TBW) cerclage compared to cannulated screws with anterior Variable Angle locking neutralisation plates (VA LNP). These enhancements can bear heavier loads and maintain the repaired patella's integrity, in contrast to traditional methods. Eighteen fresh-frozen human cadaver patellae were carefully fractured transversely at their midpoints using a saw. They were then divided into two groups of nine for subsequent utilisation. Fixation methods included Cannulated Screw Fixation added with either TBW or VA LNP Fixation Technique. Cyclic loading simulations (500 cycles) were conducted to mimic knee motion, tracking fracture displacement with Optotrak. After that, the constructs were secured over a servo-hydraulic testing machine to determine the load-to-failure on axial mode. The average fracture displacement for the anterior neutralisation plate group was 0.09 ± 0.12 mm, compared to 0.77 ± 0.54 mm for the tension band wiring with cannulated screw group after 500 cyclic loading. This result is statistically significant (p = 0.004). The anterior neutralisation plate group exhibited a mean load-to-failure of 1359 21.53 N, whereas the tension band wiring group showed 780.1 ± 22.62 N, resulting in a significant difference between the groups (p = 0.007). This research highlights the superior biomechanical advantage of VA LNP over TBW for treating simple transverse patella fractures with two cannulated screws. It also highlights how the TBW is still a valuable option considering the load-to-failure limit. Not Applicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.