Abstract

Bi2O3 was added into nickel copper zinc niobium ferrite and treated with different thermal processes to change the grain‐boundary chemical composition. The relationship between the grain‐boundary composition and varistor properties were investigated using scanning electron microscopy, transmission electron microscopy, energy dispersion spectroscopy, and X‐ray photoelectric spectroscopy. The experimental results show that Bi2O3 reacts and diffuses into the spinel ferrite grain, forming bismuth iron compounds, causing the spinel ferrite chemical composition near grain boundary becomes iron deficient. The Fe deficiency spinel ferrite near the grain boundary then changes into p‐type conduction. The annealing process after sintering improves the bismuth oxide diffusion and chemical reaction near the grain boundary, which can increase the grain‐boundary resistivity. The n‐type semiconductive grain interior and p‐type spinel ferrite near the grain‐boundary combination can form a double Schottky barrier, leading the specimen to exhibit varistor properties. A multifunctional varistor‐magnetic material with a nonlinear coefficient of 10 and initial permeability of about 225 at 10 MHz can be successfully fabricated by sinteringNi0.2881Cu0.1825Zn0.4802Nb0.0096Fe2.0168O4 ferrites added with 5 mol% Bi2O3 sintered at 950°C, then annealed at 650°C for 1 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.