Abstract

A novel low temperature-fired (950°) multifunctional varistor-magnetic ferrite material can be obtained by adding V2O5 into CuCr0.2Fe1.8O4 ferrite. The relationship between the grain-boundary composition and varistor properties were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion spectroscopy (EDS), and X-ray photoelectric spectroscopy (XPS). The addition of V2O5 can effectively reduce the sintering temperature of CuCr0.2Fe1.8O4 ferrites to temperatures of lower than 950°. Moreover, the V^(5+) ions dissolved into spinel structure and acted as donor dopant, which resulted in the semi-conductive grain. The copper-rich observation at the grain boundary based on the TEM and EDS results implied that copper oxide would possibly develop at the grain boundary as the acceptor state, forming double Schottky barriers with the n-type semiconductor grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.