Abstract

Perturbations and modulations during early life are vital to affect gut microbiome assembly and establishment. In this study, we assessed how microbial communities shifted during calf diarrhea and with probiotic yeast supplementation (Saccharomyces cerevisiae var. boulardii, SCB) and determined the key bacterial taxa contributing to the microbial assembly shifts using a total of 393 fecal samples collected from 84 preweaned calves during an 8-week trial. Our results revealed that the microbial assembly patterns differed between healthy and diarrheic calves at 6- and 8-week of the trial, with healthy calves being stochastic-driven and diarrheic calves being deterministic-driven. The two-state Markov model revealed that SCB supplementation had a higher possibility to shift microbial assembly from deterministic- to stochastic-driven in diarrheic calves. Furthermore, a total of 23 and 21 genera were specific ecotypes to assembly patterns in SCB-responsive (SCB-fed calves did not exhibit diarrhea) and nonresponsive (SCB-fed calves occurred diarrhea) calves, respectively. Among these ecotypes, the area under a receiver operating characteristic curve revealed that Blautia and Ruminococcaceae UCG 014, two unidentified genera from the Ruminococcaceae family, had the highest predictiveness for microbial assembly patterns in SCB-responsive calves, while Prevotellaceae, Blautia, and Escherichia-Shigella were the most predictive bacterial taxa for microbial assembly patterns in SCB-nonresponsive calves. Our study suggests that microbiome perturbations and probiotic yeast supplementation serving as deterministic factors influenced assembly patterns during early life with critical genera being predictive for assembly patterns, which sheds light on mechanisms of microbial community establishment in the gut of neonatal calves during early life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.