Abstract

AbstractThe vertical temperature structure in the tropics is primarily set by convection and therefore follows a moist adiabat to first order. However, tropical upper tropospheric temperatures differ among climate models and observations, as atmospheric convection remains poorly understood. Here, we quantify the variations in tropical lapse rates in CMIP6 models and explore reasons for these variations. We find that differences in surface temperatures weighted by the regions of strongest convection cannot explain these variations and therefore we hypothesise that the representation of convection itself and associated small scale processes are responsible. We reproduce these variations in perturbed physics experiments with the global atmospheric model ICON-A, in which we vary autoconversion and entrainment parameters. For smaller autoconversion values, additional freezing enthalpy from the cloud water that is not precipitated warms the upper troposphere. Smaller entrainment rates also lead to a warmer upper troposphere, as convection and thus latent heating reaches higher. Furthermore, we show that according to most radiosonde datasets all CMIP6 AMIP simulations overestimate recent upper tropospheric warming. Additionally, all radiosonde datasets agree that climate models on average overestimate the amount of upper tropospheric warming for a given lower tropospheric warming. We demonstrate that increased entrainment rates reduce this overestimation, likely because of the reduction of latent heat release in the upper troposphere. Our results suggest that imperfect convection parameterisations are responsible for a considerable part of the variations in tropical lapse rates and also part of the overestimation of warming compared to the observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.