Abstract
We consider the solution to a stochastic heat equation. This solution is a random function of time and space. For a fixed point in space, the resulting random function of time, $F(t)$, has a nontrivial quartic variation. This process, therefore, has infinite quadratic variation and is not a semimartingale. It follows that the classical It\^{o} calculus does not apply. Motivated by heuristic ideas about a possible new calculus for this process, we are led to study modifications of the quadratic variation. Namely, we modify each term in the sum of the squares of the increments so that it has mean zero. We then show that these sums, as functions of $t$, converge weakly to Brownian motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.