Abstract
The stochastic heat equation is the heat equation driven by white noise. We consider its numerical solutions using the finite difference method. Its true solutions are Holder continuous with parameter $(\frac{1}{2}-\epsilon)$ in the space variable, and $(\frac{1}{4}-\epsilon)$ in the time variable. We show that the numerical solutions share this property in the sense that they have non-trivial limiting quadratic variation in x and quartic variation in t. These variations are discontinuous functionals on the space of continuous functions, so it is not automatic that the limiting values exist, and not surprising that they depend on the exact numerical schemes that are used; it requires a very careful choice of scheme to get the correct limiting values. In particular, part of the folklore of the subject says that a numerical scheme with excessively long time-steps makes the solution much smoother. We make this precise by showing exactly how the length of the time-steps affects the quadratic and quartic variations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.