Abstract
This study amined to explore the variation of soil organic nitrogen components across the degradation succession of Gahai Wetland. By combining field sampling and laboratory analysis, the content and distribution characteristics of soil organic nitrogen components, i.e., hydrolytic total nitrogen (HTN), unidentified acidolytic nitrogen (HUN), ammonium nitrogen (AMN), amino acid nitrogen (AAN) and acid amino sugar nitrogen (ASN) were investigated in undegraded (UD), lightly degraded (LD), moderately degraded (MD), and heavy degraded (HD) Gahai Wetland. The results showed that, in the 0-10 cm layer, the contents of total nitrogen (TN), HUN, AMN, and AAN in LD decreased by 17.3%, 19.4%, 8.6%, and -5.6%, 28.0%, 19.4%, 17.1% and 0 in MD, and 35.8%, 28.8%, 28.6% and 55.6% in HD, respectively. In the 10-20 cm layer, the four components decreased by 4.0%, 10.3%, 2.9% and 9.1% in LD, 21.0%, 18.3%, -2.9% and -9.1% in MD, and 9.9%, 38.9%, 21.2% and 51.4% in HD, respectively. The corresponding contents in the 20-40 cm soil layer did not change. The proportion of soil acid-hydrolyzed nitrogen components to TN under four degradation stages was HUN (25.9%-32.5%) > AMN (6.7%-11.1%) > AAN (4.8%-11.1%) > ASN (1.2%-4.4%). Soil water content was the main driving factor for variations of soil organic nitrogen components as indicated by the results of redundancy analysis. Degradation of the Gahai Wetland significantly reduced the content of soil TN and the components of acid-hydrolyzed nitrogen in 0-10 cm soil layer, and weakened the nitrogen "sink" function of soils. The AAN and ASN were sensitive to wetland degradation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have