Abstract

AbstractThe northwestern part of North America has recorded multiple tectonic events, such as terrane accretion, strike‐slip motion, and subduction of the Pacific and Yakutat plates, providing an iconic setting to investigate the tectonic evolution of the continental crust. In this study we analyze the receiver functions at seismic stations deployed during 1999–2022 to estimate the crustal thickness, as well as possible slab signature, in Alaska and northwestern Canada. The Moho signal can be clearly detected within the continental region. Specifically, in northwestern Canada, the thickest crust is observed beneath the Cordilleran Deformation Front, which marks the structural boundary between the North American Craton and the North American Margin. We observe a few distinct offsets in the Moho depth located both within the tectonic units and approximately across the major faults between the tectonic units. We provide a first‐order estimate of the depth gradient of the Moho offsets based on the horizontal distance of the two closest seismic stations across the offsets. We propose that the Moho offsets reflect the cumulative impact of the accretionary orogenies and post‐orogenic tectonic events on crustal modification. The continental Moho signal is weak or obscure in Aleutian and southcentral Alaska, and the oceanic Moho within the subducting plates is likely detected. This study provides new seismic insights into understanding the impacts of the tectonic events on continental formation and evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call