Abstract

The terrestrial ecosystem is an important source of atmospheric oxygen, and its changes are closely related to variations in atmospheric oxygen level. However, few studies have focused on the characteristics and driving forces behind terrestrial ecosystem oxygen sources. In this study, based on observations and net carbon flux simulations from the Sixth Coupled Model Intercomparison Project, we investigated temporal and spatial variations in terrestrial oxygen sources. As the largest source of atmospheric oxygen, the terrestrial ecosystem can produce approximately 7.10±0.38 gigatons of oxygen per year, and the tropics are the main oxygen producing regions. Notably, there are many “non-oxygen-producing lands”, where the lands no longer provide oxygen to the atmosphere, located in the high latitudes and around the deserts of Central Asia. Long-term analysis reveals that anthropogenic activities and climate change are responsible for the variations in terrestrial oxygen sources owing to land-use changes and competing effects between net photosynthesis and heterotrophic respiration. By 2100, more oxygen will be produced from the low-middle latitudes, while the high latitudes will serve as a larger oxygen sink due to extreme land-use type changes and drastic increases in soil respiration. Through this study, we supplement the understanding of the modern oxygen cycle and help provide better estimates for future variations in atmospheric oxygen level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call