Abstract

Organic manure application is crucial for the maintenance and improvement of soil fertility. However, it inevitably results in increased paddy CH4 emissions, restricting the use of organic manure in the rice fields. In the present study, two kinds of manures, rapidly composted manure (RCM) and non-composted manure (NCM), were investigated through a 19-week greenhouse experiment, during which the dynamics of CH4 emission, soil parameters (DOC, acetate, NH4+, NO3−, and SO42−), and communities of methanogens and methanotrophs were simultaneously measured. The results showed that NCM significantly enhanced CH4 emission, while RCM decreased CH4 emission by 65.03%; there was no significant difference with the manure-free treatment. In order to well understand the methanogenic process, the seasonal CH4 flux was divided into two periods, namely Stage 1 (before drainage) and Stage 2 (after drainage), on the basis of CH4 emission intensity. The different CH4 production abilities among the three treatments could contribute to the varied CH4 emissions at Stage 1. The much higher soil DOC concentrations were observed in the manure-amended soils (NCM- and RCM-treatments), which could correspondingly lead to the relative higher CH4 emissions compared to the control during Stage 1. Furthermore, the increased methanogenic abundance and the shifted methanogenic archaeal community characterized by the functionally stimulated growth of Methanosarcina genus were observed in the NCM-treated soils, which could consequently result in a higher CH4 emission from the NCM treatment relative to the RCM treatment. As for Stage 2, apart from the significant decrease in soil DOC, the increased contents of soil NO3− and SO42−, especially with the RCM-treated soils, were also detected following the drainage, which might retard CH4 production. The lower CH4 emission at Stage 2 could also be attributed to the vigorous aerobic CH4 oxidations, especially in the RCM-treated soils. As a support, the amount of methanotrophs revealed an increasing trend during the late rice growth period, as did the predominance of the methylotrophy of Methylophilaceae species, which showed robust co-occurrence with methanotrophs, inferring interspecies cooperation in methane oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.