Abstract

A field experiment was conducted in an irrigated saline rice field of Gadakujang (a fishing hamlet of coastal Odisha, India, ravaged by the super cyclone of 1999 and cyclone BOB02 of 2006), to study the effects of locally available organic and fresh green manure amendment to the saline soil on methane (CH4) emission during wet and dry seasons using the conventional closed chamber flux measurement method. In a first report of this kind, CH4 emission vis-à-vis yield improvement of rice with different locally available organic manure application from coastal saline rice field soil of Odisha, is reported. The study confirms that CH4 flux from the saline soil planted to rice is significantly lower than that of irrigated inland non-saline rice field during both wet and dry seasons. Cumulative seasonal CH4 flux from different treatments of the coastal saline rice field ranged between 119.51 and 263.60 kg ha−1 during the wet season and 15.35–100.88 kg ha−1 during the dry season. Lower CH4 emission during the dry season may be attributed to the increased soil salinity (EC1:2) that went up from 0.76 dS m−1 during the wet season to 3.96 dS m−1 during the dry season. Annual CH4 emission per Mg grain yield was significantly low from plots treated with locally available green manure Morning glory (Ipomoea lacunosa) (17.27) with significantly high rice grain yield. Study indicates that Morning glory may be used as a potential green manure to increase grain yield and reduced CH4 emission from the coastal saline rice ecosystems of the tropics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call