Abstract
BackgroundMeasurements of knee cartilage thickness derived from MR images are attractive biomarkers for osteoarthritis research. Although some cross-sectional multivendor studies exist, none have employed fully automatic three-dimensional MRI analysis. Our objective was to evaluate the variations in knee cartilage thickness measurements obtained using automated methods and MRI instruments from five different vendors. MethodsThe subjects were 10 healthy volunteers aged 22–60 years. MRI models with 3 Tesla strength from five different companies were used. Cartilage thickness was quantified fully automatically for seven regions. We hypothesized that “the MRI model influences cartilage thickness measurements.” Inter-measurement error, defined as the absolute difference between the targeted and median thicknesses determined by the five MRI models, was analyzed using histograms. The factors generating the largest inter-measurement error were also examined. ResultsNo exceptional trends attributable to a specific instrument model were observed, and the p-value from the Kruskal–Wallis test exceeded 0.05 in all seven regions. Therefore, the study hypothesis was rejected. Of the 350 measurements, the inter-measurement error was ≤0.05 mm in 53 %, ≤0.10 mm in 75 %, and ≤0.20 mm in 95 %. Analysis of the medial tibial cartilage, which had the largest inter-measurement error, revealed mis-extraction of synovial fluid as cartilage. ConclusionsThe choice of MRI model did not influence cartilage thickness measurements. Overall, 95 % of the inter-measurement errors were within 0.20 mm. The greatest error resulted from mis-extracting synovial fluid as cartilage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have