Abstract

Using high-frequency onshore wind data from four different heights of a coastal tower, the variations in gust factor with turbulence intensity, height and wind speed were studied under typhoon conditions. The gust factor increases with increasing turbulence intensity and, most often, can be described by a linear relationship with the turbulence intensity. The gust factor decreases with height and is relatively small compared with those presented in the national codes and other studies. A value of 2.5 is acceptable for the peak factor, which is close to the recommended value of the national code in China. The gust factor increases with increasing wind speed and is also affected by the wind direction. The gust factor has a value to that of previously published results when the wind flows roughly perpendicular to the shoreline, and has a smaller value when the wind flows roughly parallel to the shoreline. The phenomenon is caused by the confinement of shoreline on the sea wave development. Sea waves tend to propagate normal to the shoreline because of the refraction effect. As a result, a shorter roughness length exists in the parallel direction to the shoreline. It can be further explained by the weakness in the momentum flux exchange between the air and sea based on the wave form drag theory when the wind flows parallel to the shoreline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.