Abstract
The circadian clock in the mammalian suprachiasmatic nucleus (SCN) can be entrained by light cycles longer than the normal 24-h light/dark (LD) cycle, but little is known about the effect of such cycles on circadian clocks outside the SCN. Here we examined the effect of exposure to a 26-h T cycle (T26, 1 h:25 h LD) on patterns of expression of the clock protein, PERIOD2 (PER2), in the SCN and in four regions of the limbic forebrain known to exhibit robust circadian oscillations in PER2: the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), central nucleus of the amygdala (CEA), basolateral amygdala (BLA), and dentate gyrus (DG). All rats showed stable entrainment of running wheel activity rhythms to the T26 cycle. As previously shown, PER2 expression in the SCN was stably entrained, peaking around the onset of locomotor activity. In contrast, exposure to the T26 cycle uncoupled the rhythms of PER2 expression in the BNSTov and CEA from that of the SCN, whereas PER2 rhythms in the BLA and DG were unaffected. These results show that exposure to long light cycles can uncouple circadian oscillators in select nuclei of the limbic forebrain from the SCN clock and suggest that such cycles may be used to study the functional consequences of coupling and uncoupling of brain circadian oscillators.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have