Abstract
We consider the variational structure of a time-fractional second order Mean Field Games (MFG) system with local coupling. The MFG system consists of time-fractional Fokker-Planck and Hamilton-Jacobi-Bellman equations. In such a situation the individual agent follows a non-Markovian dynamics given by a subdiffusion process. Hence, the results of this paper extend the theory of variational MFG to the subdiffusive situation, providing an Eulerian interpretation of time-fractional MFG systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.